Influence of Acetic Acid on the Photovoltaic Performance of Ru(II) Dye Sensitized Nanocrystalline Tio2 Solar Cells

نویسندگان

  • Kyung Hee Park
  • Kyung Jun Hwang
  • Jae Wook Lee
  • Sung Yong Cho
چکیده

In the photoelectrode, the important factor to achieve high efficiency of DSSC is weak acid treatment rather than specific regime of heat treatment. Acid treated paste of titanium oxide nano particles enhanced a factor of three higher of the energy conversion efficiency(none (η=2.0%), H2SO4(η=1.7%), HCl(η=2.8%), CH3COOH(η=6.2%) in dye-sensitized solar cells (DSSCs). The effects of the different concentrations were investigated. To anal size the results, the chemical reaction schemes with XPS, scanning electron microscopy, attenuated total reflection Fourier transform infrared spectroscopy, current density-voltage property and power conversion efficiency of the DSSCs were introduced. Acetic acid treatment is advantageous for the adsorption to molecules and enhancement of the photoelectric performance of DSSC. It was found that DSSC showed better photovoltaic performance when the TiO2 paste was treated by acids. The acid treatment of TiO2 electrode provides useful information to understand the mechanism of energy conversion of DSSC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of azo dye as sensitizer in dye-sensitized solar cells

An azo dye used as photosensitizers in Dye-sensitized solar cells DSSCs. Azo dyes economically superior to organometallic dyes because they are color variation and cheap. The spectrophotometric evaluation of an azo dye in solution and on a TiO2 substrate show that the dye form J-aggregation on the nanostructured TiO2 substrate. Oxidation potential measurements for used azo dyes ensured an energ...

متن کامل

Influence of nanostructured TiO2 film thickness on photoelectrode structure and performance of flexible Dye- Sensitized Solar Cells

A  commercial  Ti-Nanoxide  was  deposited  on  In-doped  SnO2 (ITO) polymer  substrates by  tape casting  technique with different thicknesses  (7,  14  and  36μm)  to  be  used  as  photoelectrode  in flexible  dye-sensitized  solar  cells  (DSSCs).  Ruthenium  dye  was adsorbed on each TiO2 film for 24 h. The resulting photoelectrodes were used to form flexible DSSCs in combination with...

متن کامل

Acid azo dyes for efficient molecular photovoltaic: study of dye-sensitized solar cells performance

In this paper we sensitized three free-metal azo days Dye 1, Dye 2 and Dye 3 based on 1,8-naphthalimide with n-propyl as the electron donor group. We used sulfonic acid and hydroxyl substituents as the electron acceptor anchoring group in synthesized dyes. The proposed dyes were sensitized from acenaphthene as the starting material by standard reactions and characterized by different techniques...

متن کامل

Optical Studies and Photovoltaic Performance of Nanocrystalline Titanium Dioxide Sensitized with Local Dye

Nanocrystalline titanium (iv) oxide paste has been deposited on Fluorine doped tin oxide glass substrate by the blade method. The deposited film was subjected to thermal treatment to obtain an electrode foe a photo-electrochemical cell. The electrode was sensitized with prophyrin dye which was a local dye extracted from carica papaya leaves. Avaspec 2.1 spectrophotometer was used to obtain the ...

متن کامل

Electron Transfer in Dye-Sensitized Nanocrystalline TiO2 Solar Cell

The dye-sensitized solar cells (DSSC) have been regarded as one of the most promising new generation solar cells. Tremendous research efforts have been invested to improve the efficiency of solar energy conversion which is generally determined by the light harvesting efficiency, electron injection efficiency and undesirable electron lifetime. In this review, various characteristics of dye-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006